This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/1050"
#include <iostream>
#include <vector>
#include "../utility/Matrix.hpp"
#include "../utility/Modint.hpp"
int main()
{
int M, K; std::cin >> M >> K;
Matrix<Modint<1000000007>> m(M, M, 1);
for(int i=0; i<M; i++) {
for(int j=0; j<M; j++) {
m[(i*j)%M][j] = m[(i*j)%M][j] + 1;
}
}
auto m2 = m^K;
std::cout << m2[0][0] << std::endl;
return 0;
}
#line 1 "test/yukicoder-1050.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1050"
#include <iostream>
#include <vector>
#line 2 "utility/Matrix.hpp"
#include <cassert>
#line 4 "utility/Matrix.hpp"
template<typename T>
struct Matrix{
int row, col;
std::vector<std::vector<T>> A;
Matrix() { row = col = 1; }
Matrix(int h, int w, T val = 0) : row(h), col(w), A(row, std::vector<T>(col, val)){}
Matrix(const std::vector<std::vector<T>> &v) : row(v.size()), col(v[0].size()), A(v){}
int GetRow() const { return row; }
int GetCol() const { return col; }
const std::vector<T>& operator[](int i) const { return A[i]; }
std::vector<T>& operator[](int i) { return A[i]; }
Matrix E(int n) {
Matrix M(n, n);
for(int i=0; i<n; i++) M[i][i] = 1;
return M;
}
Matrix& operator+=(const Matrix& B) {
int n = GetRow(), m = GetCol();
assert(n == B.size()); assert(m == B[0].size());
Matrix C(n, m);
for(int i=0; i<n; i++) {
for(int j=0; j<m; j++) {
C[i][j] = A[i][j] + B[i][j];
}
}
return *this = C;
}
Matrix& operator-=(const Matrix& B) {
int n = GetRow(), m = GetCol();
assert(n == B.size()); assert(m == B[0].size());
Matrix C(n, m);
for(int i=0; i<n; i++) {
for(int j=0; j<m; j++) {
C[i][j] = A[i][j] - B[i][j];
}
}
return *this = C;
}
Matrix& operator*=(const Matrix& B) {
int k = GetRow(), l = GetCol(), n = B.GetRow(), m = GetCol();
assert(l == n);
Matrix C(k, m);
for(int i=0; i<k; i++) {
for(int j=0; j<m; j++) {
for(int k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
return *this = C;
}
Matrix& operator^=(long long n) {
Matrix B = Matrix::E(GetRow());
while(n > 0) {
if(n&1) B = B * (*this);
*this = (*this) * (*this);
n >>= 1;
}
return *this = B;
}
Matrix operator+(const Matrix& B){ return Matrix(*this) += B; }
Matrix operator-(const Matrix& B){ return Matrix(*this) -= B; }
Matrix operator*(const Matrix& B){ return Matrix(*this) *= B; }
Matrix operator^(long long n){ return Matrix(*this) ^= n; }
friend std::ostream& operator<< (std::ostream& os, const Matrix& m) {
for(int i=0; i<m.GetRow(); i++) {
for(int j=0; j<m.GetCol(); j++) {
if(j != 0) os << ' ';
os << m.A[i][j];
}
os << '\n';
}
return os;
}
};
#line 4 "utility/Modint.hpp"
template<int64_t mod>
struct Modint{
int x;
Modint(long y = 0) : x(y >= 0 ? y % mod : (mod - (-y) % mod)) {}
Modint& operator++() {
x++;
if(x == mod) x = 0;
return *this;
}
Modint& operator--() {
if(x == 0) x = mod;
x--;
return *this;
}
Modint& operator+=(const Modint& a) {
x += a.x;
if(x >= mod) x -= mod;
return *this;
}
Modint& operator-=(const Modint& a) {
x += mod - a.x;
if(x >= mod) x -= mod;
return *this;
}
Modint& operator*=(const Modint& a) {
x = (1LL) * x * a.x % mod;
return *this;
}
Modint& operator/=(const Modint& a) {
x *= a.inv();
return *this;
}
Modint operator+() const { return *this; }
Modint operator-() const { return Modint(-x); }
Modint operator+(const Modint& a) { return Modint(*this) += a; }
Modint operator-(const Modint& a) { return Modint(*this) -= a; }
Modint operator*(const Modint& a) { return Modint(*this) *= a; }
Modint operator/(const Modint& a) { return Modint(*this) /= a; }
bool operator==(const Modint& a) { return x == a.x; }
bool operator!=(const Modint& a) { return x != a.x; }
Modint pow(long long n) {
Modint x = *this, r = 1;
while(n) {
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
Modint inv() {
int u = 1, v = 0, a = x, b = mod, t;
while(b) {
t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
return Modint(u);
}
friend std::ostream& operator<< (std::ostream& os, const Modint& a) {
return os << a.x;
}
};
#line 6 "test/yukicoder-1050.test.cpp"
int main()
{
int M, K; std::cin >> M >> K;
Matrix<Modint<1000000007>> m(M, M, 1);
for(int i=0; i<M; i++) {
for(int j=0; j<M; j++) {
m[(i*j)%M][j] = m[(i*j)%M][j] + 1;
}
}
auto m2 = m^K;
std::cout << m2[0][0] << std::endl;
return 0;
}